Microstructure Investigation on Metal Hydride Alloys by Electron Backscatter Diffraction Technique

نویسندگان

  • Yi Liu
  • Andreas Jossen
چکیده

The microstructures of two metal hydride (MH) alloys, a Zr7Ni10 based Ti15Zr26Ni59 and a C14 Laves phase based Ti12Zr21.5V10Ni36.2Cr4.5Mn13.6Sn0.3Co2.0Al0.4, were studied using the electron backscatter diffraction (EBSD) technique. The first alloy was found to be composed of completely aligned Zr7Ni10 grains with a ZrO2 secondary phase randomly scattered throughout and a C15 secondary phase precipitated along the grain boundary. Two sets of orientation alignments were found between the Zr7Ni10 grains and the C15 phase: (001)Zr7Ni10A//(110)C15 and [100]Zr7Ni10A//[011]C15, and (011)Zr7Ni10B//(100)C15 and [100]Zr7Ni10B//[313]C15. The grain growth direction is close to [313]Zr7Ni10B//[111]C15. The second alloy is predominated by a C14 phase, as observed from X-ray diffraction analysis. Both the matrix and dendrite seen through a scanning electron microscope arise from the same C14 structure with a similar chemical composition, but different orientations, as the matrix with the secondary phases in the form of intervening Zr7Ni10/Zr9Ni11/(Zr,Ni)Ti needle-like phase coated with a thin layer of C15 phase. The crystallographic orientation of the C15 phase is in alignment with the neighboring C14 phase, with the following relationships: (111)C15//(0001)C14 and [110]C15//[1120]C14. The alignments in crystallographic orientations among the phases in these two multi-phase MH alloys confirm the cleanliness of the interface (free of amorphous region), which is necessary for the hydrogen-storage synergetic effects in both gaseous phase reaction and electrochemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

The grain boundaries of three Laves phase-related body-center-cubic (bcc) solid-solution, metal hydride (MH) alloys with different phase abundances were closely examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and more importantly, electron backscatter diffraction (EBSD) techniques. By using EBSD, we were able to identify the alignment of the crystallograp...

متن کامل

Electron backscatter diffraction of a plutonium–gallium alloy

An experimental technique has recently been developed to characterize reactive metals, including plutonium (Pu) and cerium, using electron backscatter diffraction (EBSD). Microstructural characterization of Pu and its alloys by EBSD had been previously elusive primarily because of the extreme toxicity and rapid surface oxidation rate associated with Pu metal. The experimental technique, which i...

متن کامل

Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation

Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrys...

متن کامل

Characterization of Deformation Microstructure using Transmission Electron Microscopy: Observation of Cube Slip in γ-TiAl Alloys at Elevated Temperatures

This article gives a brief description of the use of diffraction contrast transmission electron microscopy for characterizing the deformation microstructure. The capabilities and limitations of different modes of microscopy are also discussed. One of strengths of transmission electron microscopy technique is its capability to identify uncommon deformation system. This is illustrated by the anal...

متن کامل

Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016